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1 Introduction

A number of papers have been published recently that form a lively debate about the

nature of inference in particle physics in general, and in the extraction of the CKM phase

α from measured branching ratios and asymmetries in particular (see e.g. [1] and references

therein for theoretical motivations and recent experimental results).

The first paper, Charles et al., [2], proposed several different parameterizations of the

CKM phase α problem and showed, in their formulation, that different parameterizations

resulted in different posterior marginal distributions for α. These different distributions

were held to be the result of using flat priors in the different parameterizations. The

interpretation of p(α) in Charles et al. also claimed that it did not correctly identify the

8 known mirror solutions to the CKM phase α problem. Charles et al. also provided a

simple 2-dimensional problem which they claimed showed similar features.

Charles et al. is a criticism of the approach taken by the UTfit collaboration [3], and

Bona et al. replied in [4]. In this paper the emphasis is shifted from full distributions over

α to 95% probability regions, which are shown to be very similar to the 95% confidence

intervals given in Charles et al.. Bona et al. also note that the identification of the 8

modes in the 1-CL plot of Charles et al. is not robust to slight changes in the values of

the observables, and that, in practice there is plenty of information regarding the hadronic

amplitudes which can (and should) be used to remove some of the degeneracy.

Charles et al. replied in [5], criticizing the change of emphasis from p(α) to 95% prob-

ability intervals as being an admission that the approach of Bona et al. has significant
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dependence on the parameterization chosen. They also repeated their criticism that the

Bayesian marginal posterior, p(α), does not show the expected 8-fold ambiguity.

A paper by Botella and Nebot [6] took another approach, noting that some param-

eterizations used in the analysis of the CKM phase α problem are inadequate if they go

beyond the minimal Gronau and London assumptions [7]. In particular, the “modulus and

argument” (MA) and “real and imaginary” (RI) parameterizations of Charles et al. were

shown to not uniquely identify α in the parameterization, leading to the leaking of spuri-

ous information into p(α). Botella and Nebot identified which parameterizations do not

suffer from this problem. They also, however, concentrated on probability regions, though

they came tantalizingly close to giving the correct Bayesian interpretation of p(α) in their

appendices C and E.

In this paper we will show how to perform a Bayesian analysis of the problem that

results in the same p(α) for any parameterization. We also show how regarding p(α) as a

Bayesian subjective distribution, i.e. one that describes our state of knowledge, allows it to

be correctly interpreted in a straightforward manner — it is not sufficient just to use Bayes

Theorem to perform computation, the result of that computation must also be interpreted

from the Bayesian perspective.

We begin by reconsidering the simple 2-dimensional problem with mirror solutions of

Charles et al. as it is illustrative of some of the main points we wish to make.

2 Mirror solutions in a simple 2D problem

The problem, from section VIII of [2], is presented as “a theory predicts the expressions of

two observables X and Y as functions of the two parameters α and µ”:

X = (α + µ)2

Y = µ2 , (2.1)

where “an experiment has measured the observables from a Gaussian sample of events”

with the results:

X = 1.00 ± 0.07

Y = 1.10 ± 0.07 . (2.2)

In terms of the assumed physics, only α is of interest.

It is important even at this early stage of the analysis to be clear regarding what is

considered an “observable”, what is considered a “parameter”, and what is meant by saying

that an observable has a distribution, or that a parameter has a distribution. Observables

are expected to have values that vary with different experimental data sets, and saying

that an observable has a distribution quantifies the uncertainty due to a particular data

set. Saying that a parameter has a distribution is a Bayesian concept, indicating that there

is actually a true, fixed, value, and that the distribution represents our state-of-knowledge

regarding what that value might be.
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This distinction is often somewhat artificial, however. Typically the quantities labeled

as observables are not actually observed directly, instead they are themselves inferred from

observed data. Different data sets will give different distributions over the observables and,

consequently in the Bayesian framework, different distributions over the parameters. In

equation 2.2, for example, the means and variances for X and Y are the summary results

of a particular data set.

The standard approach to computing a joint Bayesian posterior distribution for α and

µ is to use equations (2.1) and (2.2) to define a likelihood, and then to combine it with a

prior, p(α, µ), on α, µ, giving

pα,µ(α, µ|d) ∝ 1

2πσXσY
exp

(

− [(α + µ)2 − X̄]2

2σ2
X

− [µ2 − Ȳ ]2

2σ2
Y

)

p(α, µ) (2.3)

where d denotes the experimental data and X̄, Ȳ , σX and σY are derived by considering the

full expression for the likelihood over the individual measurements. They are all functions

of d.1, 2

This formulation is subject to the standard criticism that different parameterizations

require different priors — if, for example, we were to parameterize the problem by α,

µ′ where µ′ = µ2, then clearly flat priors on µ and µ′ will result in different posterior

distributions [8].

The discussion of observables and parameters above motivates an alternative Bayesian

analysis, one that results in a posterior distribution that is invariant to the parameterization

chosen. In this analysis we first use the observed data to obtain a posterior distribution

over X and Y . This requires a prior on the observables, and yields

pX,Y (x, y|d) ∝ 1

2πσXσY
exp

(

−(x− X̄)2

2σ2
X

− (y − Ȳ )2

2σ2
Y

)

p(x, y) . (2.4)

Placing priors in the space of observables is reasonable: it is here that the experimenter

will typically have good prior knowledge – prior knowledge that determined the design of

the experiment.

The physical parameters of interest, α, µ are related to X, Y by the deterministic

relationships in equation (2.1). The distribution pα,µ(α, µ|d) is thus computed by the

change of variables rule. When the posterior for α, µ is computed in this way, the general

result in appendix A can be used to show that the resulting posterior marginal distribution,

1This simple form of the likelihood is a result of the assumed Gaussian errors. In general, it will not be

expressible in terms of summary statistics.
2Conditioning explicitly on the data, di, i = 1 . . . Nd Charles et al.’s “Gaussian sample of events”, gives

p(x|d) ∝ p(x)

Nd
Y

i=1

1√
2πσe

exp

„−(x − di)
2

2σ2
e

«

.

It is well known that the product of two Gaussians has variance less than either of the two. As a consequence

p(d|x) becomes steadily more peaked as more data is collected (Nd increases). The prior p(x) does not

change. Thus, contrary to what is claimed in Charles et al., it is often simple to show that “the relative

prior dependence of the posterior distribution is reduced as the statistical information from the measured

data is increased”.
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Figure 1. Left: the posterior distribution of µ, α; Right: the marginal distribution pα(α|d).

pα(α|d) is invariant with respect to the chosen parameterization of the other variables (in

this case, µ).

Changing variables gives

pα,µ(α, µ|d) ∝ pX,Y (x(α, µ), y(α, µ)|d)

∣

∣

∣

∣

∂(X,Y )

∂(α, µ)

∣

∣

∣

∣

(2.5)

resulting in

pα,µ(α, µ|d) ∝ 1

2πσXσY
exp

(

− [(α + µ)2 − X̄ ]2

2σ2
X

− [µ2 − Ȳ ]2

2σ2
Y

)

|µ(α + µ)| (2.6)

on the assumption of a flat prior p(x, y), and where the factor of 4 is removed because of

the multiple solutions. This is plotted in figure 1.

Comparing equation (2.6) with equation (2.3) it is clear that this transformation of

variables formulation is equivalent to using the prior

p(α, µ) ∝ |µ(α + µ)|.

In this problem it is straightforward to show that the Jeffrey’s prior [9], given by
√

|I(α, µ)|
where I() is the Fisher Information matrix, is also proportional to |µ(α+µ)|. The Jeffrey’s

prior is the prior that is invariant to transformation of the variables. Thus, computing a

posterior pX,Y (x, y|d) using a uniform prior on X and Y followed by a transformation of

variables to give pα,µ(α, µ|d) is equivalent to using a Jeffrey’s prior on α, µ.

While figure 1 (left) looks very similar in projection to figure 5 in [2], note, however,

that the modes of pα,µ(α, µ) are not located at the values of α that were found by sub-

stituting the mean values X̄ and Ȳ into equations (2.1). They are shifted because of the

presence of the term |µ(α + µ)| in the expression for Pα,µ(α, µ) in equation (2.6), coming

from the determinant of the Jacobian of the transformation from X,Y to α, µ. In this case

the displacement of the modes is small; it is not visible in figure 1. This need not be the

case in general, and indeed is not the case for the CKM phase α problem. See section 3.

The simplest way to form the marginal distribution p(α) is to generate samples from

the distributions of X and Y , to transform these samples into samples of α and µ, and

then to plot a histogram of the samples of α [10]. In this case we generate samples xi ←
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N (1.00, 0.07) and yi ← N (1.10, 0.07), i = 1 . . . N for some suitably large N , and from each

pair (xi, yi) we find the four solutions for (αi, µi), namely

αi = ǫx
√

xi − ǫy
√

yi

µi = ǫy
√

yi (2.7)

where ǫx = ±1, ǫy = ±1 and each of the four (αi, µi) pairs is given weight 1/4.3

In the right panel of figure 1 we plot the marginal distribution pα(α|d), which is

very similar to figure 6 (bottom) from Charles et al.. In their discussion of this figure,

Charles et al. state that “if α and µ are fundamental physics parameters, Nature can only

accommodate a single pair of values”, and criticize the Bayesian approach by saying that

the marginal pα(α|d) only has 3 peaks, with the peak at zero being higher than the other

two. This is an incorrect interpretation of the distribution. This distribution is in fact

exactly right when interpreted as a Bayesian subjective distribution, as representing our

state of knowledge. Nature has chosen one of the four modes visible in the joint distribution

pα,µ(α, µ). We do not know which one. On the basis of our knowledge, there are two

chances out of four that Nature has chosen α ≈ 0, so our state of knowledge is exactly

that α ≈ 0 is twice as likely as α ≈ −2 or α ≈ 2. This is precisely what is shown by the

distribution in the right panel of figure 1, where the central mode has twice the area of

each of the other two modes.

This simple problem has illustrated two of the key points we wish to make, namely

that the posterior distribution must be interpreted in a subjective Bayesian manner, and

that the posterior distribution in this type of problem can be found by putting priors in the

space of observables, and then using the transformation of variables rule to compute the

distribution over the parameters derived from the observables. The simple problem is not

rich enough to clearly demonstrate that this approach also leads to posterior distributions

for α which are independent of the parameterization chosen. To do this, we turn now to

the full CKM phase α problem.

3 Extracting the CKM phase α

There are six observable parameters involved in the CKM Phase α problem, three CP

averaged branching fractions, B+−, B+0, B00, the direct CP asymmetries C+−and C00,

and the B0B̄0 mixing-induced CP asymmetry, S+−. These have been recently measured

by the B-factory experiments BaBar and Belle [1, 11].

The general formula for the branching ratio of a 2-body decay of a meson B can be

found in [12] (eqs. 38.16 and 38.17). Specializing to a final state of light mesons, and

3Note, however, that with finite probability some of the samples xi and/or yi will be negative, resulting

in imaginary values for µi and/or complex values for αi. This is not a problem with probability theory.

What it indicates is that the Gaussian distributions in equations (2.2) are only approximations to the true

distributions of X and Y.
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Observable B+− B+0 B00

Mean±std (5.1 ± 0.4)× 10−6 (5.5 ± 0.6) × 10−6 (1.45 ± 0.29) × 10−6

Observable C+− C00 S+−

Mean±std −0.37± 0.10 −0.28± 0.40 −0.50± 0.12

Table 1. World average values for the observables, from [2].

averaging over CP-eigenstate yields:

Bij =
τ i+j
B

16πMB~

|Aij |2 + |Āij |2
2

Cij =
|Aij |2 − |Āij |2
|Aij |2 + |Āij |2

S+− =
2Im(Ā+−A+−∗)

|A+−|2 + |Ā+−|2 .

The decay amplitudes can be parameterized in a number of ways. Here we will consider

three parameterizations, the Pivk-LeDiberder (PLD) and Explicit Solution (ES) parame-

terizations considered in Charles et al. and the so-called 1i parameterization from Botella

and Nebot. These vary in how they parameterize Aij and Āij , but all include α explicitly

as one of the parameters. Details of the parameterizations are given in appendix B.

Denote the parameterizations as (α, φPLD), (α, φES) and (α, φ1i), where φPLD denotes

the other five parameters of the PLD parameterization, and similarly for φES and φ1i.

Denote by O the set of six observables, B+−, B00, B+0, C+−, C00 and S+−. Then we have

O = f(α, φPLD)

= g(α, φES)

= h(α, φ1i) ,

where the functional forms of f(), g() and h() can be derived from the parameterizations

given in appendix B. Table 1 gives the values for the observables and their uncertainty

that are used in this work.4 Using a uniform prior in the space of observables, these define

a multivariate Gaussian posterior, p(O|d) where d is the experimental data.

Using the change-of-variables formulation gives

pPLD(α, φPLD) = p(f(α, φPLD)|d)|Jf |

and the marginal distribution for α is given by

pPLD(α) =

∫

φPLD

p(f(α, φPLD)|d)|Jf |dφPLD. (3.1)

Similarly

p1i(α) =

∫

φ1i

p(h(α, φ1i)|d)|Jh|dφ1i. (3.2)

4The values for the observables given in table 1 are those used in [2], as we wish to compare our method

with theirs. Subsequent improved measurements result in the distributions only having four modes. See

appendix B of [6].
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0.016 PLD parameterization

tempered transitions MCMC

Figure 2. The first three plots show the marginal posterior distributions for α under the PLD,

ES and 1i parameterizations generated by inverting the systems. The short vertical red lines on

the top left plot indicate the central values obtained by [2]. Legends indicate the tuple of signs

corresponding to each mode. The final plot is of samples generated from the PLD parameterization

using the tempered transitions MCMC scheme. Binning in α is identical for all figures. In the first

three plots, a sample of 100000 sets of observables is drawn, and the choices of signs, as indicated

by the legends, allows each mode to be determined separately. As a result, the sum histograms

have 800000 non independent entries. The fourth histogram is of size 100000.

In appendix A we show that under reasonable conditions these marginal distributions

are identical, i.e. that the marginal posterior distribution for α is independent of the chosen

parameterization. This should not be surprising — the same information on the same

observables gives the same information about the same physical parameter.

In figure 2 we plot histograms representing the three marginal posterior distributions.

The samples were generated by sampling the observables and inverting the systems.5 As ex-

pected, the three histograms are essentially identical. We also show a histogram of samples

generated using the PLD parameterization and a Markov chain Monte Carlo algorithm [13].

As expected, the histogram is the same as the others. It is included to demonstrate that our

approach is not restricted to cases where the system can be inverted. Care must be taken in

choosing the MCMC scheme, as the distribution is strongly multimodal. We used the tem-

pered transitions scheme of [14] which successfully sampled the 8 modes of the distribution.

If we consider the modulus-and-argument (MA) parameterization [4, equation 4], the

distribution for α is modified slightly from those shown in figure 2. In the MA parameteriza-

5If we choose to use non-flat priors on the observables., then we can generate samples representing the

distribution p(α, φ) by generating samples from the observables, weighting each sample by the prior, and

then re-sampling the set of weighted samples to give samples from the posterior. See [10] for details.
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tion, the presence of CP violation in the I = 1/2 piece results in zero probability for α = 0.

This can also be seen by noting that the Jacobian for the MA system is identically zero at

α = 0. Using again the tempered transitions MCMC scheme, the histogram of the samples

differs from those in figure 2 by the presence of a narrow minimum at α = 0/180 degrees.

The histograms generated by inverting the systems are clearly composed of 8 modes,

one for each of the 8 solutions. (There are two modes that overlap almost totally around

α ≈ 140◦.) By construction, each of these modes has equal probability mass (=1/8), even

though they are of different shapes; the heights and widths vary, but the area beneath

each mode is the same. Each possible solution for α has different uncertainty (due to the

complex relationship between α and the observables), but each mode has equal probability

to be the one chosen by Nature.6,7

The final marginal distribution is the sum of these 8 modes, which is plotted as the

dotted line. This shows a large peak around α = 140◦ and a number of smaller peaks.

Again, this distribution correctly describes our state of knowledge — there are 2 of the 8

modes near α = 140◦ and, because we don’t know which mode Nature has chosen, there

are thus 2 chances out of 8 that α ≈ 140◦. There is only 1 chance out of 8 that α ≈ 80◦, so

the peak there has half the area of the peak at α ≈ 140◦. This accurately represents our

state of knowledge about α.

Also shown on figure 2 are short vertical lines marking the values of α that are found

when the mean values for the observables are transformed into the different parameter-

izations. Again, it comes as no great surprise that the mean of the distribution of the

inputs is not transformed to the mean of the distribution of the output, especially when

the uncertainty on some of the variables is of the same order as the value itself, and the

system of equations is highly nonlinear.8 This also naturally explains why there is still

finite probability density that α = 0/180◦.

As the methodology presented in this work relies on the one-to-one relationship (up to

discrete ambiguities) between the observables {B+−, B+0, B00, C+−, C00, S+−} and the

underlying isospin amplitude representation, the analysis of the case when B00and C00are

not measured is not in general possible, once the system has been inverted. For instance,

although the PLD representation presents the very appealing feature that α appears in the

system (B.2) only in the expressions for B00and C00, and therefore cannot be determined

6The reader is reminded that we are reconsidering the case discussed in Charles et al.. A complete

analysis of the CKM phase α problem would include additional information which would break the sym-

metry [15].
7In this case, and in the 2d problem in section 2, it is known by construction that each mode contains the

same proportion of the total probability (1/4 for each mode in the 2d problem and 1/8 for the CKM phase α

problem). In general, however, this may not be known in advance. A numerical search routine with random

restarts can be used to locate the modes, and the Hessian, H , at each mode can be computed. (Often this

will be computed as a by-product of the numerical optimization.) The probability volume in each mode can

be approximated by p(θ̂)/
p

det(H/2π) where θ̂ are the parameters at the mode [16]. Alternatively, samples

generated without knowing how many modes are present (e.g. by using the tempered transitions MCMC

scheme) can be clustered, and the number of samples in each cluster gives a measure of the probability

volume in that mode.
8We note, however, that as the variances of the observables are reduced, the mean values remaining

fixed, the modes do converge to the values given by inverting the mean values.
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Figure 3. Left: Posterior distribution for the ’1i’ parameterization when C00and B00are uniformly

sampled in [-1, +1] and [0, 20B00], respectively. Sampling is identical to figure 2. Right: Joint

distribution of B00 and C00 implied by the observations and the assumption of isospin symmetry.

when the latter are not measured, this feature is not obvious anymore in the inverted

system (B.3). This is equivalent to the fact, already mentioned in Botella and Nebot

(section C.1), that {B00, C00} are algebraically constrained by any set of measurements

{B+−, B+0, C+−, S+−} and the assumption of isospin symmetry. As noted by Botella and

Nebot, sampling C00 uniformly between −1 and +1, and B00 between 0 and Bmax, results in

a distribution that is much flatter than those shown in figure 2. This distribution does not,

however, become flat as Bmax →∞, because ultimately the shape of the underlying single

mode distributions will be driven by the algebraic constraints from the isospin assumption

and by the error propagation from the measured observables. As an illustration, we show

in figure 3 the result of the ‘1i’ parameterization for Bmax = 20B00. Increasing the upper

bound on B00 will not change the final distribution, but will result in more samples being

thrown away as incompatible with the constraints on the system. Figure 3 (right) shows

a histogram of the samples of B00 and C00 that were retained. It shows the probabilistic

constraints on B00 and C00 due to the observations and the assumption of isospin symmetry.

4 Conclusions

In the debate concerning the analysis of the CKM phase α problem we have contributed two

important points. The first is a formulation of the problem that is invariant to the choice

of parameterization. The second is the correct interpretation of the posterior marginal

distribution for α as a representation of our state of knowledge.

In the CKM Phase α problem the relationships between the parameters of the model

and the observables are deterministic. In this case the appropriate statistical technique to

find the distribution over the model parameters is that of the transformation-of-variables.

This gives us a distribution over the model parameters that summarizes our state of knowl-

edge. It does not, and cannot, tell us if our model is true or false. We have no way of know-

ing the actual mechanisms of the external universe. We can only generate models of the

universe and use data to cast light on these models. However “true” we may think our mod-

els are today, better models will certainly be developed tomorrow. The scientific method

– 9 –
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is composed of the cycle of model formulation, testing against observations, and model re-

vision and development. Bayesian statistics provides many tools to facilitate this process.
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A Reparameterization invariance of the marginal posterior pdf over α

We consider a system of N random variables Xi (i = 1 . . . N), which are related to a set of

N observables Oi as Oi = fi(X). We also assume that it is possible to reparameterize the

variables Xi into a set Yi so that X1 = Y1 = α, Yi = φi(X), and Oi = gi(Y). Within the

Bayesian framework, we consider a dataset d used to estimate the observables, which yields

the posterior pdf pO(o|d). Under the further hypothesis that f , g and φ are invertible, we

can write the marginal posterior on α using the parameterization Y as:

pY

α (α|d) =

∫

. . .

∫

pO(o|d)|Jg |dy2 . . . dyN as pX(x|d) = pO(o|d)|Jg | (A.1)

=

∫

. . .

∫

pO(o|d)|Jg ||Jφ|dx2 . . . dxN (A.2)

=

∫

. . .

∫

pO(o|d)|Jf |dx2 . . . dxN (A.3)

= pX

α (α|d) as pY(y|d) = pO(o|d)|Jf |, (A.4)

proving that the marginal posterior on α is parameterization invariant. Thus, if a Bayesian

analysis has been performed on the dataset d so that the posterior pdf on the observables

is known, the marginal posterior on α obtained by the change of variables Yi = φi(X) is

invariant under reparameterization of the N − 1 marginalized variables Xi, i = 2 . . . N .

B Parameterizing the CKM phase α problem

We give details here of the three parameterizations, the Pivk-LeDiberder (PLD), the Ex-

plicit Solution (ES) and the 1i parameterizations.

B.1 The Pivk-LeDiberder parameterization

PLD introduces six parameters, α,αeff , µ, a, ā,∆, via

A+− = µa , Ā+− = µāe2iαeff

A+0 = µei(∆−α), Ā+0 = µei(∆+α) (B.1)

A00 = µei(∆−α)

(

1− a√
2
e−i(∆−α)

)

, Ā00 = µei(∆+α)

(

1− ā√
2
e−i(∆+α−2αeff )

)

– 10 –
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which results in

B+− = C
τB0

2
µ2(a2 + ā2)

B00 = C
τB0

2
µ2

(

2 +
a2 + ā2

2
−
√

2(a cos (∆ − α) + ā cos (∆ + α− 2αeff ))

)

B+0 = CτB+µ2

C+− =
a2 − ā2

a2 + ā2
(B.2)

C00 =
a2−ā2

2 −
√

2(a cos (∆ − α)− ā cos (∆ + α− 2αeff ))

2 + a2+ā2

2 −
√

2(a cos (∆− α) + ā cos (∆ + α− 2αeff))

S+− = 2
aā

a2 + ā2
sin 2αeff

where C = (16πMB~)−1. This system can be solved to give

µ2 =
B+0

CτB+

a2 = K(1 + C+−)

ā2 = K(1− C+−)

sin 2αeff =
S+−

√

1− (C+−)2
≡ sin s (B.3)

cos (∆− α) =
(1 + C+−)K − 2K B00

B+−
(1 + C00) + 2

2
√

2K(1 + C+−)
≡ cos t

cos (∆ + α− 2αeff ) =
(1− C+−)K − 2K B00

B+−
(1− C00) + 2

2
√

2K(1− C+−)
≡ cos u

where we define K =
B+−

B+0

τB+

τB0

, and s, t and u as in the final three equations. The fourth

equation yields 2αeff = s or 2αeff = π − s. The final two equations yield ∆ + α = ǫt + s or

∆ + α = ǫt + π − s and ∆− α = ǫ′u or ∆ + α = ǫt + π − s, respectively, where ǫ, ǫ′ = ±1.

Finally, we obtain α = ǫt + ǫ′u + s or α = ǫt + ǫ′u + π− s as the 8 solutions corresponding

to each set of values of the observables.

B.2 The explicit solution parameterization

The Explicit Solution (ES) parameterization [17] begins with the same parameters as the

PLD parameterization, and then defines

c = cos(φ), φ = α−∆

c̄ = cos(φ̄), φ̄ = α + ∆− 2αeff
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and also s = sin(α), s̄ = sin(φ̄). Using the identity 2α = 2αeff + φ + φ̄ allows the following

solution to be derived.

tan α =
sin(2αeff )c̄ + cos(2αeff )s̄ + s

cos(2αeff )c̄− sin(2αeff )s̄ + c

sin(2αeff ) =
S+−

√
1− C+−2

cos(2αeff ) = ±
√

1− sin2(2αeff )

c =

√

τB+

τB0

τ
B0

τ
B+
B+0 + B+−(1 + C+−)/2− B00(1 + C00)

√

2B+−B+0(1 + C+−)

c̄ =

√

τB+

τB0

τ
B0

τ
B+
B+0 + B+−(1− C+−)/2− B00(1−C00)

√

2B+−B+0(1− C+−)

s = ±
√

1− c2

s̄ = ±
√

1− c̄2 (B.4)

where the 8 solutions in the range [0, π] are apparent from the three arbitrary signs.

B.3 The 1i parameterization

Botella and Nebot introduce the following parameterization

A+− = e−iαT3/2(T + iP )√
2A+0 = e−iαT3/2

Ā+− = e+iαT3/2(T − iP )√
2A00 = e−iαT3/2(1− T − iP )√
2Ā+0 = e+iαT3/2√
2Ā00 = e+iαT3/2(1− T − iP )

and writing T and P in terms of real and imaginary parts allows the system of equations

for the observables to be inverted in terms of α, T3/2, Tr, Ti, Pr, Pi, in the following way:

T =

√

2B+0

τB+C

Tr =
2B+0 τB0 +

(

B+− − 2B00
)

τB+

4B+0 τB0

Pi =

(

2B00 C00 − B+− C+−
)

τB+

4B+0 τB0

(Ti + Pr)
2 =

B+−τB+

2B+0τB0(1 + C+−)
− (Tr − Pi)

2

(Ti − Pr)
2 =

B+−τB+

2B+0τB0(1− C+−)
− (Tr + Pi)

2

α = arctan

(

±
√

b2 + a2 − c2 + a

c− b

)

with a = (T 2
i − P 2

i + T 2
r − P 2

r ), b = 2PiTi + 2PrTr, c = S+−B+−τB+/(2τB0B+0).
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